MAT 162 Final Exam

Name

MAT 162 Final Ex	am		Name
Page	Points	Score	4. (18 pts) Evaluate the following:
1	29		
2	24		$\frac{\pi}{2}$
3	24		$\int \sin^3 x dx.$
4	23		0
Total	100		-1
Instructions:			
	our work in this		
		problems for full credit.	
3. Be clear al	nd neat in your	r work. Any illegible work, or will not be graded.	b. $\int x^2 e^{2x} dx$
4. Place your	answers in a k	will not be graded.	$\begin{bmatrix} b. \end{bmatrix} x \ e^{-ax}$
		ou may use the back of the	
		Page # in the problem space.	
			-
y = 1 - x about the :		ed by rotating the line	
y = 1 - x about the.	λ datis for $0 \leq \lambda$	$z \leq 1$.	
			c. $\int \tan^3 \theta d\theta$.
			c. Jtan <i>b ub</i> .
		te the type of graph you would	
expect from the list.	Some answers	may appear twice in your list.	
(Λ) Line (\mathbf{D})]	Damahala	(C) D as a	$\int \frac{1}{x} dx$
	Parabola Ellipse	(C) Rose (F) Hyperbola	$\int_{0}^{1} \frac{x}{\sqrt{1+3x^2}} dx.$
	Empse	(I) Hyperbola	
a. $2x^2 - 3y^2 = 12$			
a. 2x = 5y = 12			
b. $r = 3\cos 2\theta$			
0.7-500520			
c. $x = 2\sin\theta, y = 2\theta$	$\cos \theta$		
	-		$\left e. \int \frac{1}{x^2 + 3x - 4} dx. \right $
d. $x = 2t^2 + 3, y = 1$	+		$\int x^2 + 3x - 4$
u. $x = 2i + 5, y = 1$	-1		
e. $r = \sin \theta$			
e. $r = \sin \theta$			
			4
3. (3 pts) Find the an	rc length of the	curve $f(x) = \ln(\cos x)$ for	
$n \in \pi$			
$0 \le x \le \frac{\pi}{3}.$			
			$3 \sqrt{1-2}$
			f. $\int_{-\infty}^{3} \sqrt{9 - x^2} dx$
			-3

MAT 162 Final Exam	Name
5. (2 pts) Determine if the integral $\int_{1}^{\infty} \frac{x}{1+x^2} dx$ converges or	9. (12 pts) Find the general solution to each equation. If initial conditions are given, then find the particular solution.
diverges.	a. $\frac{dy}{dx} = xy$.
6. (3 pts) You initially have 200 g of bacteria. If the population triples every 20 minutes, what is the population after 50 minutes?	
	b. $y'+2y = e^x$, $y(0) = 3$.
7. (4 pts) Consider the curve $x = 1 - t^2$, $y = t^3$ for $0 \le t \le 2$. a. Find the slope of the tangent line at the point with $t = 1$.	
	c. $y''+2y'+2y=0$.
b. What is the length of this curve for $0 \le t \le 2$?	
	d. $y''-2y'-8y=0$, $y(0) = 1, y'(0) = 0$.
8. (3 pts) Consider the initial value problem $\frac{dy}{dx} = x - 4y$, $y(0) = 1$. Use Euler's Method to find an approximation to $y(1)$ using steps of $h = 0.25$.	

MAT 162 Final Exam 10. (3 pts) A 50 thousand gallon lake is full of polluted water. 13. (9 pts) Sum the series: a. $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^n} =$ Pure water is pumped into the lake at a rate of 2000 gal/hr. The well-mixed contents of the lake are pumped out into a filtering system at 2000 gal/hr. How long will it take to reduce the amount of pollutant to one tenth the initial amount? 11. (3 pts) Put the conic $x^2 + 2y^2 + 6x - 8y + 13 = 0$ into standard form. Describe the conic as completely as you can. b. $a_n = \sqrt[n]{2(n+1)^2}$. 12. (3 pts) Consider the curve $r = \sin 3\theta$. Find the area of one of the loops in the curve

b.
$$\sum_{n=1}^{\infty} \left[\frac{1}{3^n} - \frac{1}{4^n} \right] =$$

c.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)} =$$

14. (6 pts) Find the limit $\lim_{n \to \infty} a_n$ to determine if the given sequence converges, or diverges.

a.
$$a_n = \frac{n^3 - 2n}{n^2 + 5n}$$
.

c.
$$a_n = \left(\frac{2n}{2n-1}\right)^n$$
.

MAT 162 Final Exam	Name
15. (8 pts) Determine if the following series converge absolutely, converge conditionally, or diverge. <u>State the test used</u> .	17. (6 pts) Determine the interval of convergence and radius of convergence of the following power series.
a. $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n^4}.$	a. $\sum_{n=2}^{\infty} \frac{(x-1)^n}{2^n}.$
b. $\sum_{n=1}^{\infty} \frac{1+n^2}{n^2+n^3}$.	b. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n^2 n!}$.
c. $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+2}}.$	
	18. (6 pts) Provide the terms up to and including powers of x^4 in a Maclaurin series expansion of the given function.
	a. $f(x) = \cos 2x$.
d. $\sum_{n=1}^{\infty} n^2 e^{-n} .$	
16. (3 pts) Use an appropriate series expansion to approximate the	b. $f(x) = \ln(1 - x^2)$.
following to three decimal places: $\int_{0}^{0.25} \frac{dx}{1+x^2} \approx$	$0. \ f(x) = m(1 \ x).$